Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
BMC Health Serv Res ; 23(1): 485, 2023 May 13.
Article in English | MEDLINE | ID: covidwho-2314392

ABSTRACT

BACKGROUND: During the early stages of the COVID-19 pandemic, there was considerable uncertainty surrounding epidemiological and clinical aspects of SARS-CoV-2. Governments around the world, starting from varying levels of pandemic preparedness, needed to make decisions about how to respond to SARS-CoV-2 with only limited information about transmission rates, disease severity and the likely effectiveness of public health interventions. In the face of such uncertainties, formal approaches to quantifying the value of information can help decision makers to prioritise research efforts. METHODS: In this study we use Value of Information (VoI) analysis to quantify the likely benefit associated with reducing three key uncertainties present in the early stages of the COVID-19 pandemic: the basic reproduction number ([Formula: see text]), case severity (CS), and the relative infectiousness of children compared to adults (CI). The specific decision problem we consider is the optimal level of investment in intensive care unit (ICU) beds. Our analysis incorporates mathematical models of disease transmission and clinical pathways in order to estimate ICU demand and disease outcomes across a range of scenarios. RESULTS: We found that VoI analysis enabled us to estimate the relative benefit of resolving different uncertainties about epidemiological and clinical aspects of SARS-CoV-2. Given the initial beliefs of an expert, obtaining more information about case severity had the highest parameter value of information, followed by the basic reproduction number [Formula: see text]. Resolving uncertainty about the relative infectiousness of children did not affect the decision about the number of ICU beds to be purchased for any COVID-19 outbreak scenarios defined by these three parameters. CONCLUSION: For the scenarios where the value of information was high enough to justify monitoring, if CS and [Formula: see text] are known, management actions will not change when we learn about child infectiousness. VoI is an important tool for understanding the importance of each disease factor during outbreak preparedness and can help to prioritise the allocation of resources for relevant information.


Subject(s)
COVID-19 , Adult , Child , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics/prevention & control , Intensive Care Units , Models, Theoretical
2.
Bioengineering (Basel) ; 8(11)2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1480569

ABSTRACT

The success of deep machine learning (DML) models in gaming and robotics has increased its trial in clinical and public healthcare solutions. In applying DML to healthcare problems, a special challenge of inadequate electrical energy and computing resources exists in regional and developing areas of the world. In this paper, we evaluate and report the computational and predictive performance design trade-offs for four candidate deep learning models that can be deployed for rapid malaria case finding. The goal is to maximise malaria detection accuracy while reducing computing resource and energy consumption. Based on our experimental results using a blood smear malaria test data set, the quantised versions of Basic Convolutional Neural Network (B-CNN) and MobileNetV2 have better malaria detection performance (up to 99% recall), lower memory usage (2MB 8-bit quantised model) and shorter inference time (33-95 microseconds on mobile phones) than VGG-19 fine-tuned and quantised models. Hence, we have implemented MobileNetV2 in our mobile application as it has even a lower memory requirement than B-CNN. This work will help to counter the negative effects of COVID-19 on the previous successes towards global malaria elimination.

SELECTION OF CITATIONS
SEARCH DETAIL